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I  INTRODUCTION 

The theoretical work presented in this report was undertaken with 

the long-range objective of developing a better basic understanding of 

the initiation and propagation of detonation in condensed explosives. 

The achievement of this objective is necessary in a program for the 
improved characterization, control, and effective use of explosives in 

military applications.  Theoretical studies are an essential part of such 

a program because experimental studies of detonating explosives are not 

completely definitive and depend on models of shock-induced reactive flow 

for their analysis and interpretation. 

1-3 
Studies of Zeldovich-von Neumann-Doering (Z-N-D) waves   were 

performed to elucidate and determine the parameters that govern the ini- 

tiation of detonation.  The problem of a single shock trajectory for 

buildup to detonation was considered, and the differential equation 

governing a shock discontinuity was examined to determine different con- 
ditions for this type of flow.  One of these conditions was used to model 

the type of flow observed in PBX 9404 during the early stages of initiation 

produced by a flying plate. 

Other properties of initiation produced by a constant velocity piston 

were considered. The equations relating the initial flow to the initial 

energy release rate in such a wave were derived, as well as conditions 

for the shock to accelerate with either a positive or a negative pressure 

gradient. These conditions demonstrate the dependence of the initiation 

process on the energy release rate, the sound speed, and the relationship 

between these quantities. A critical energy was defined for waves that 

build up to detonation with a positive pressure gradient. 

Work on reactive shocks was performed with the objective of determin- 

ing the dependence of initiation on the energy release rate and the rear- 

boundary conditions. Exact integral relationships for unsteady flow were 

derived as generalized Rankine-Hugoniot equations, but the attempts to 

construct explicit solutions for the buildup to steady detonation in a 
polytropic material with a prescribed energy release rate were unsuccessful. 
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II  BASIC ASSUMPTIONS 

Although the basic assumptions of our theoretical studies are well 
defined in reference 4, they will be repeated here for completeness. 
Reactive shocks are treated as (Z-N-D) waves with no reaction across the 
shock discontinuity, and the flow induced by the shock is assumed to be 
adiabatic, inviscid, and in local equilibrium. Consequently, irrevers- 
ible processes are restricted to shock compression and chemical reactions 
behind the shock. 

Let e,  p, and p = 1/v denote, respectively, specific internal 
energy, pressure, and density—the inverse of the specific volume. Then 
the Rankine-Hugoniot jump conditions governing the shock discontinuity 
propagating into stationary material at the front of the wave can be 

written as: 

P„(U - u ) = PoU (1) 
H     H 

P„ - Po    = PoUu (2) 
H n 

e„ - e0    = J(p„ + PoHvo - v ) (3) 
n n n 

where U denotes shock velocity, u denotes particle velocity, and the 
subscripts H and o denote quantities immediately behind and in front 
of the wave. Since our consideration will be restricted to rectilinear 
flow, it is convenient to write the conservation equations governing the 
flow behind the shock as: 

(4) 

(5) 

(6) 

1 Sy_ 
v St 

h 
= 

du 
or t 

n   9U 
= _ OP 

•oht 

oe 
a - p 

3v 



where h and r denote Lagrange and Eulerian distance coordinates and 
t denotes the time. The flow and the chemistry are coupled by the 
dependence of e on the reaction coordinates. For convenience in this 
report, only a single exothermic reaction will be considered. 

Let s, T, A, and X denote the specific entropy, temperature, the 
chemical affinity,6 and the extent of reaction. Then Gibbs' equation can 
be written as 

de    », ds    °v    ax ,_% 
ar • Tar-par-Aar (7) 

and the combination of Eqs. (6) and (7) gives the corresponding equation 
for the entropy production in shocked material as 

T!r = A!r 
h      h 

Combination of Eq. (8) with the time derivative of the s = s(p, P, X) 
equation of state leads to the equation 

(9) 

where the frozen sound speed c = (3p/ap)s \ ,   the Gruneisen parameter 
T/v  = (ap/ae)v ^ , and the specific heat of reaction q = -(3e/aX)p,v. 
Equation (9) is the most convenient equation for studying the interaction 
between the chemistry and the flow in the present treatment of Z-N-D waves. 
It can be derived more directly by combining Eq. (6) with the time 
derivative of the e = e(p, v, X) equation of state. 

aP 2 ap     r   ax 
*K   " 

c    T— + — q -r— at     v H at 
h h                  1 



Ill EQUATIONS OF STATE 

Equations of State of Explosives 

Equations of state of condensed explosives can be constructed from 
the results of shock wave experiments that have been performed at the 
Ballistic Research Laboratories and the Naval Ordnance Laboratory over 
the last few years. These investigations lead to the conclusion that the 
unreacted Hugoniot curve of a condensed explosive can be adequately 
described by a linear relationship of the form 

U = a + bu (10) 
H 

in the (U-u ) plane. The values of the constants a and b for 
different explosives are given in References 7 and 8.  Combination of 
Eq. (10) with Eqs. (1) and (2) gives the corresponding Hugoniot in the 
(p-v) plane as 

a (v0 - v) 
p  =   (11) I 

[v0 - b (vo - v)] I 

8 
and the variation of specific energy along the Hugoniot is determined 
by Eqs. (11) and (3). Differentiation of Eq. (11) gives the slope of i 
the Hugoniot in the  (p-v)  plane as | 

•I 
i 

dp        2 [vp + b(v0 - v)] . 

dvu " " a [vo - b (v0 - v)]
3 

H 

and the corresponding equation for the slope of the Hugoniot in the 
(p-v) plane is obtained from the jump conditions as 

dp 
du 

H 
- Po(a + 2 b u) (13) 



3 An expression for the sound speed along the Hugonlot (c/v)  in 
terms of (dp/dv)  can be obtained by combining the Hugoniot equation n 
with the first and second laws of thermodynamics. Thus combination of 
the equations 

de      ds ,„ „„ 
— = T —• - p (14) 
dv      dv 
H       H 

^  = - ip + i(v0 - v) ^ (15) 
dv dv. 
H H 

dp      /c\   TT ds P       '  '  • (16) 
/c\   rids 

dv      \v/    v dv 
H        H       H 

to eliminate Tds/dv  leads to the equation 
H 

(£)2 = £E_rr(vo.  N  iTp 
W     dv L2\v    /   J  2 v 

H      H 

An assumption about T allows the (e-p-v) equation of state of 
an explosive to be constructed over the volume spanned by the Hugoniot 
curve.  If r is assumed to be constant, or a function of v,  for 
example, the (e-p-v) equation of state has the form 

e = p + g(v) (18) 

which can be rewritten as 

H -  r (p " PH) (19) e - e 

since ©„ ,j;d p  are known as functions of v along the Hugoniot 
curve. An additional assumption about the specific heat at constant 
volume C  that is consistent with [d(r/v)/dp] = 0 is then required v v 
to construct the corresponding (p-T-v) equation of state. 



Equations of State of the Explosive Mixture 

The equation of state of the explosive mixture will be considered 

in more detail because it may be necessary to remove the assumption of 

local thermal equilibrium at a later date. 

Let the subscripts 2 and 1 denote the explosive and its products, 

and let the superscript 0 denote the standard state.  Then the equations 

for the specific energy, specific entropy, and specific volume of the 

explosive mixture can be written as 

e = e| - AQ + Aei + (1 - A)e3 (20) 

s = Asa + (1 - A)s2 (21) 

v = Avi + (1 - A)va (22) 

where ei denotes the heat of formation of the explosive, and Q = e§ - ei 

denotes the standard heat of reaction.  If ei and ea are considered to 

be functions of mechanical variables, then these equations of state are 

written formally as ej = ei(p,vi)  and ea = e2(p,va) with pi = pz  = p 
because the mixture is assumed to be in mechanical equilibrium. But if 

pressure and temperature are chosen as independent variables, they will 

be written as ei = ei(p,Ti)  and ea = ea(p,Ta).  The assumption of 

local thermal equilibrium is then expressed by the condition Ti = Ta. 

Note that Eq. (10) simplifies to the equation given in reference 4, 

e = eg - AQ + -^—- (23) 
K. - 1 

when the explosive and its products are assumed to have the polytropic 

equation of state with the same value of the polytropic index K. 

Combination of Eq. (6), expressing the First Law of Thermodynamics, 

with the time derivative of Eq. (20) leads to the equation 

» dei      . dea oA    3v 

where the Lagrange subscripts have been omitted for notational simplicity.      I 

The e1(p,vi) and ea(p,vs) equations of state can then be used to 
transform the left-hand side of Eq. (24) into the expression 

vx v2 p 



Setting X = 0,  and Sv/St = %vs/bt  + (v2 - vi)aX/at  In Eq. (24), with 

the left-hand side written as shown in (25), gives the following equation 

for conditions at the shock front 

(I?) If * [(If) • pj? - [«• <•. - ••> - © <• - «>1   «» 
va        p p 

It follows from Eq. (26) that the values of e^  and vj  are in general 

required to calculate conditions at the shock front even though the 

reaction is just starting.  For the mixture governed by Eq. (23), how- 

ever, only Q  appears on the right-hand side of Eq. (26) because 

ei = pvi/(K - 1),  e2 = pva/(K - 1),  and e2 - ei  = (oe8/dv2)(v3 - vi). 

When Ti = T2,  vi  and v2 can be considered as functions of v, 

p,  and X because the T = T(p,v,X) equation of state of the mixture 

can be formally substituted into the vi(T,p)  and vs(T,p) equations 

of state of its constituents.  In this case, 

dvi 
at 

0V2 

St 

/dvi \    Bv      /dvA      op      /dvi\      3X 
lov /\ot + \op J   % ot + \3X /      St 

P> v,X P»v 

/SvaN dv  /Bva\  dp  /dv2\ 

Uv /.St +'Up )  . at  + \ax / 
ftX       v, X       p, v 

ax 
at 

(27) 

(28) 

and Eq. (24) can be written as 

3e\  3p  r/Be /oe\  dp  r/de\      "1 £v      /de\  dA 

W . at + L\av/ .  + PJ at   "  " \ax/    at v, x p,X 

ae\    ax 
P.v 

with 

(29) 

d), - & * m &) J •«- »K£) * (^xi?) J <*» 
v,X vx      p    v,X v2 v,X 

(I)    - >(£)(i^)/»-»(£;)(!?)>     «• 
P,X p    p,X p    p,A 

p,v p,v p    p,v 

:, 



mw*mm 

Differentiation of Eq. (22) gives the relationship for the volume deriva- 

tives in Eq. (32) as 

<&)   • «- »(!r)   - -«- -«> <33) 
P,v P,v 

and Eq. (32) reduces to the equation (Se/oX)   = - Q for the mixture 

satisfying Eq. (23). 

9 



':"'•";' m 

i 

IV A SINGLE SHOCK TRAJECTORY 
IOR BUILDUP TO DETONATION 

The use of a single shock trajectory to describe the initiation 
of detonation in a condensed explosive was postulated by Lindstrom. 
Lindstrom's postulate is considered here because the existence of such 
a single shock trajectory leads to interesting conclusions about the 
initiation process. Our consideration is based on the following differ- 
ential equation governing the pressure along the shock path 

dp 

[-OP - -[ 
H 

P(c2 - (U - u)2) 
ax 

iV^H   ^ 
(du/dp)  denotes the slope of the nonreactive Hugoniot curve in 

(u-p) plane.  It is convenient to rewrite Eq. (34) for a strong 
where 
the 
shock in material governed by Eq. (23). 
jump conditions can be written as 

U = 

H 

P.. = 

K  + 1 
2 

u 
H 

(K + 1) 
(* - 1) 

(K + 1) 

In this case, the mechanical 

(35) 

H 2    P°UH 

(36) 

(37) 

and Eq. (34) simplifies to the equation 

dp H K + 1 
dt 

du 

H 
6(K - 1) dt 

H 
(38) 

where subscript D denotes the state at the front of the steady-state 
Chapman-Jouguet (CJ) wave, T = (K - 1), and q 
by the expression 

and p  are related 
(K - i)p q . (K + i)p/4(K - l). 

n u 

10 



Equation (38) cannot in general be integrated because the reactive 
flow is subsonic with respect to the shock, and the particle velocity 
gradient at the front of the wave depends on the flow between the shock 
and the rear boundary. There will be a unique shock trajectory in either 
of two cases.  In the first, the particle velocity gradient at the shock 
front depends on a shock parameter.  In the second, the piston motion, 
initiating the wave with initial particle velocity u < u_ , is itself 
generated during the buildup phase of the wave initiated with a lower 
initial particle velocity u  < u . The first case will be discussed 
before the second. 

When the particle velocity gradient at the front of the wave depends 
on a shock parameter, Eq. (38) becomes an ordinary differential equation. 
It can then be integrated formally to give the following type of equation 
for the dependence of shock pressure on time, 

PH  = 
P P(t/a) 
c 

(39) 

where p denotes the minimum initial pressure for the onset of detona- 
tion, P(0) • 1, and 0( is a characteristic reaction time. The intro- 
duction of a critical pressure for the onset of detonation is reasonable 
because many explosives are found to be nonreactive below about 40 kbar. 
For waves that build up to detonation, the function P(t/tt) also satis- 
fies the condition P(t/0f) - p /p as t/0f - °°. The relationship for 
shock pressure in a wave with an initial shock pressure p > p can be 
written as 

PH = PiPt(t - T)/a] (40) 

with 

P. = P P(T/O) 1     c 
(41) 

A simple solution to Eq. (38) is constructed to exemplify this type of 
behavior. The reaction rate along the shock path is assumed to satisfy 
the conditions 

ax * %• 
• p ) c 

3tH <»D- •pc)0i) 

ax 
St.. 

m 0 
R 

when p > p 
It     C 

when p * p 
if   c 

(42) 
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It is convenient to introduce the dimensionless variables P • PH/Pn 
and P m  p /p ,  and rewrite the differential equation as 

c   c D 

It is now necessary to prescribe  (du/dr)  as a function of the 
shocked state to obtain a single shock trajectory. The gradient should 
also be prescribed so that it attains the correct value in the CJ wave, 
For simplicity, the particle velocity gradient was assumed to be 

* ,    (P - P ) 
*H  =  1 £_ (44) 
or     2<K - l)a (1 - P ) ' 
H DC 

so that (du/dr) —  (du/dr)  as P "* 1, and the shock propagates at 
constant velocity when either P = P  or P = 1.  The combination of 
Eqs. (43) and (44) gives the differential equation 

(1 - P ) 

(P - P )(1 - P) dt    6(K - 1)0L 

which can be integrated to give 

(P - P )(1 - P)  =  (P - P )d - P) exp [(* + l)t/6(IC - l)a  ]     (46) 
c      i       i   c D 

Equation (46) with K = 3 was used to plot the graph of time to detona- 
tion versus initial pressure P  shown in Figure 1. The dimensionless 
time to detonation t*/OL was defined as the time taken for P to 
attain a value of 0.95. 

Consider now the case when a piston initiating the flow at p> p 
and a particle with the same initial pressure in the wave initiated at 
p  follow the same path. Such a situation will occur, for example, 
when the acceleration of a particle depends only on its initial pressure 
or particle velocity.  It will also occur when the acceleration is zero 
and the particle paths are straight lines.. An exact solution for this 
type of flow is presented in this report because it was observed by 
Kennedy10 in the early stages of initiation of detonation in PBX 9404. 

12 
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In these experiments, flying plates thrown at different velocities behave 
as constant velocity pistons and produce the same shock trajectory when 
the energy release rate is small. To satisfy the momentum equation, 
Eq. (5), the pressure must be a function only of the time t , and the 
particle velocity must be a function only of the Lagrange distance h. 
It is convenient to introduce the Lagrange time coordinate T by the 
equation for the shock path h(T) = J    Udt, so that T is the time a 
particle enters the wave and t = T along the shock path. The shock 
pressure p  and the shock particle velocity u  can then be used to 
define the time dependence of the pressure and particle velocity fields 
as p = p (t) and u = u (T),  and the Lagrange continuity equation, 
written as 

m - PU[U(T) - ufT)] (47) 
n        it 

can be used to obtain the corresponding density field. 

The polytropic equation Eq. (23) will again be used for convenience. 
In this case the shock is governed by the equations 

H      H 

H    du   . SU ,._% + U T- (49) 
dt     H dh 

H     H 
with 

dp du du 
s - (?)^r -  (K-ixfH.Tr (50) 

Vdu/ dt H dt dt 
H 

ft. - - KpH | + <K . ijp^ (51) 
H H 

and Q„ = Q dXidtg. When the particle paths are straight lines and 
(dp/dh) * (ou/ot) » 0 , combination of Eqs. (48)-(51) give- the rela- 
tionship between the particle velocity gradient and the energy release 
rate at the shock front as 

H 

14 



and the corresponding shock trajectory is determined by the equation 

du. 
H 

H dt (2* - 1) *H 
(53) 

Integrating Eq. (53) gives the particle velocity field as 

u(T)  = Ui[l + Ki I(T)]* (54) 

and the pressure field follows from the jump conditions as 

p(t) = pjl + Ki I(t)] (55) 
T=t 

where Ki = 2(K - l)/(2* - 1), u" I(T - t) - J   Q (s')ds',  and the 
subscript i denotes the initial condition at  °      t = T = 0. 
Differentiating Eq. (54) gives the Lagrange particle velocity gradient 
as 

Su    Kl 
QH(T) 

OT 2  u(T) 
(56) 

integrating Eq. (56) gives the deformation gradient as 

^ = ft ST         * 

(K  -   l)u*(T)   +  Ki6   (T)(t   - 
H                      n 

-  T) 

U(T) 
(57) 

and the Eulerian particle velocity gradient follows from Eqs. (56) and 
(57) as 

Su 
St 

KiQH(T) 

(K - l)u'(T) + Ki^(T)(t - T) 
(58) 

Equation (57) and the Lagrange continuity equation give the equation for 
the specific volume as 

H 
1 + 

Ii^(T)(t - T) 

(* - DuJCT) (59) 

It follows from Eq. (53), (54), (55), and (59) that the • energy release 
rate at the shock front Qu determines the flow. The case when the 

15 



particle velocity gradient is a function of time is of particular inter- 
est and will be considered in more detail. Equation (58) gives the 
condition for this type of flow as 

(K - l)u*(T) - KXQJJCTXT + 00 = 0 (60) 

where a is a characteristic time defined by the initial reaction rate, 
and the corresponding equations for the particle velocity gradient and 
the shock particle velocity follow from Eqs. (58), (60), and (53) as 

du 
or t + a 

(61) 

and 
du 
H (K - 1) H 

dT (T + 00 
(62) 

Integration of Eq. (62) gives the particle velocity field as 

K-l 

T + on a ir = m (63) 

the pressure field as 

^-CH*] 
JC-l 

(64) 

and the density field follows from Eq. (59) as 

P. 
H 

= [TT2 (65) 

The energy equation 

|E    «    -Kp|H+  (IC-l)ri 

obtained by setting ca • Kp/P and Iq 
the volumetric energy release rate as 

• -•-•    •"•'••    ic-a 

rf ,  (2K - 1) !l tof* 
w   (ic - i) a \p±J 

(66) 

- (K - 1)Q in Eq. (9), gives 

(67) 
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Since the shock pressure and particle velocity increase with time, 
Eqs. (63), (65) and (67) cannot be used to describe the whole of the ini- 
tiation process resulting in a steady detonation wave. Other equations 
must therefore be patched to them to describe the approach to the steady 
state.  It is reasonable to assume that reaction in the early stages of 
initiation occurs in hot spots arising from inhomogeneities. Then the 
energy release rate in hot spots produced at the shock front determines 
the flow, and the associated energy release rate behind the accelerating 
shock will enhance reaction in the bulk of the shocked material. If, 
moreover, there is a critical temperature for the onset of thermal 
explosion, the temperature distribution in the wave will determine where 
shocked material explodes and produces a second shock, which initiates 
bulk reaction and dominates the flow in the later stages of the initiation 
process. 

Consider, for example, the simple case when (dT/dX)   = (dp/dX)_  = 0, 
(de/dX)_ „ = (de/dX)-, •, and the time rate of change of temperature along 
a particle path and the Lagrange temperature gradient are governed by the 

.- 

equations, 

3T 
at 

v           ap    (&?\     0v 

v       at + \av/ . at 
P.X 

and 

3T 
at 

/a-n     av 
=  \ov/ . aT 

P.X 

(68) 

(69) 

Combining Eqs. (68) and (69), subject to the condition (dv/dt)„ = 
-(dv/dT)  along the shock path, gives the equation governing the shock 
temperature as 

dTH     Cv<K ~ 1} dPH 
—  - — ~ (70) I 
dt        v    dt 

since dp/dt = dpj./dt. Since dv/dt > 0 it follows from Eqs. (68) and 
(70) that the temperature increases faster along a particle path than 
along the shock path. The mechanism of initiation will resemble that        jj 
observed in nitromethane11 when the initial pressure is about 80 kbar,       I 
because the critical temperature will be attained and thermal explosion 
will occur behind the first shock. The position where the second shock       | 
is formed, however, depends on the temperature distribution and can be        I 
determined when the explicit form of the p * p(v,T) equation of state 
is known. 
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V  INITIATION BY A CONSTANT VELOCITY PISTON 

Initiation by a constant velocity piston was considered because 
flying plates are used in experimental initiation studies and because 
constant particle velocity is chosen as the rear boundary in many numeri- 
cal studies. The problem is to understand and quantitatively account for 
the observed shock trajectories in condensed explosives. Of particular 
interest is the case when the initial shock pressure is low and the shock 
propagates at essentially its initial velocity before accelerating very 
rapidly to attain the detonation velocity. Since the wave can develop 
initially with either a positive or a negative pressure gradient but 
must have a positive gradient in the final buildup to detonation, our 
approach was to determine a condition for the initial shape of the wave 
and then look for a criticality condition for the onset of detonation. 
It is convenient first to derive the initial conditions in a wave ini- 
tiated by a piston with an arbitrary motion. The combination of Eqs. 
(48)-(50) with Eq. (9) evaluated at the shock front gives the following 
equation for tbe derivatives of the particle velocity along the shock 
path: 

H H H    H H 

It follows from the momentum equation, Eq. (5), that Eq. (71) is also an 
equation relating the pressure and particle velocity gradients at the 
shock front. The initial particle velocity gradient in a wave initiated 
by a constant velocity piston is obtained by setting du/dt = 0 in 

n 
Eq. (71) as 

«. au    _  
oh  * v[U(dp/du) + v0(c/v)"] n H 

(72) 

where q « q dX/dt . When (ou/oh)  is known, the initial time rate 
of change of pressure in the wave ana the initial time rate of change 
of shock particle velocity can be evaluated with the equations 

P
H   dp   _ dp ou ;_«x «—-  =  _£-  «  u _£  _ (73) 

H       H  H 

IS 



du 
dv H dv dv 

nmt—mm —••^MMB a •MM + U •IM 

du dt dt dh 
H H H 

and 
du 
 H    ., du ,„„. 
oT" " u"dt (74) 

H 

obtained by combining Eqs. (48)-(50) with the boundary condition 
du/dt = dp/dh * 0, The corresponding value of the volume gradient can 
be evaluated with the equation, 

dhH     LduH - u J dhH 
(75) 

obtained by combining the continuity equation with the identity 

(76) 

It follows from Eqs. (72)-(75) that the initial values of the first 
derivatives of the flow in a reactive wave initiated by a constant 
velocity piston are determined by the initial shock strength, the equa- 
tion of state of the explosive, and the initial value of the energy 
release rate. Alternatively, a knowledge of the initial value of one 
of the derivatives is sufficient to determine the initial value of the 
energy release rate when a, b, and T   are known. Measurement of one 
of these quantities in a series of experiments using flying plates 
thrown at different velocities is therefore sufficient to determine the 
dependence of the initial energy release rate on pressure. 

We will now derive the equations that determine the shape of the 
wave during the early stages of the initiation process. For notational 
convenience, the subscript H will now be omitted from the derivatives, 
but it should be remembered that the equations specify the initial con- 
ditions in the wave. Since the piston moves with constant velocity, it 
follows from the momentum equation that the pressure gradient at the 
piston is zero. Consequently, the initial rates of change of pressure 
along the piston and along the shock path are equal as shown by Eq. (73), 
and it is necessary to find the second derivative (d p/dh ) to deter- 
mine whether the wave develops with a positive or a negative pressure 
gradient. During the early stages of the flow, the wave will develop 
with a positive gradient and the pressure will be higher at the shock 
than at the piston when the Initial value of d8p/dha > 0; when d8p/dh8 < 0, 
the wave will develop with a negative gradient and the pressure will be 
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2       5! 
higher at the piston than at the shock; when d p/3h = 0,  there will 
be no gradient. 

The equation for (33p/dha) is derived from Eqs. (4), (5), (9), 
and Eqs. (48-50). Combination of the equations obtained by differen- 
tiating Eqs. (4), (5), and (9) to eliminate the second derivatives of 
shock pressure and particle velocity leads to the equation 

t |!§ („ + 2vo ft) = . .$ + ft („= gj + ft ft) + £(.£tf   <77) 9h \       du/    3t   du V  3ha  oh dt/  du \dt / 

when account is taken of the equations 

O U Op 

dhlH " "Voo^ (78) 

A = 14- =0 (79)  . 
ota    otoh 

imposed by the rear boundary condition. Partial differentation of 
Eq. (9) written in terms of du/dh, with respect to t and h, yields 
expressions for dap/ota  and o2u./3hS. Substitution of these expressions 

2     2 
into Eq. (77) then gives the required expression for 3 p/oh . 

2     2 The equation obtained for    d p/dt      is 

d p /cvo\ op du 3   /c\      -nfvof       0u •       r.. ,„„. 
aF  '  (—) aF - v° ai: cTVvJ " r(vJ v° aiTq + v q       (80) 

and the equation obtained for d u/dh  is 

tta* ="(iJ^ln{v) + 0r[(v^)v7M- v'l^vl]     (81> 

The combination of Eqs. (70), (80), and (81) to eliminate dap/dts anU 
2     2 St     & 

d u/dh  give the equation for d o/dh  as 
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^v0c 

v0 L\v / oh " du \c/ ohJ 

r Tdp /vU f   5q  .."I 
v Ldu Vvoc/ v° ah " qJ 

(82) 

where 

B = [U2 + 2Uv0dp/du + (v0c/v)
2] 

Equation (82) specifies the dependence of the initial shape of the 
pressure profile produced by a constant velocity piston on the energy 
release rate and the  e s e(p, v, X) equation of state, and can be 
used to determine whether the wave develops with a negative or a positive 
pressure gradient when these quantities are known. 

Consider the case when the explosive is described by Eq. (18), the 
products obey a polytropic equation of state, and Eq. (20) gives the 
e = e(p, v, X) equation of state as 

e = e§ - XQ + YZ^ + (1 - XHKspva + g(v3)J       (83) 

with Ka = (f
l  - (K - l)"1). Note that Eq. (83) reduces to Eq. (23) 

when the explosive is assumed to have a polytropic equation of state 
since then Ka • g(va) = 0. Equation (82) can be used to derive expres- 
sions for the derivatives d(c/v) /dt and d(c/v) /dh that are needed 
to determine the sign of 9 p/dh . The simplest case with the explosive 
and its products in thermal equilibrium (Ti = Ta = T) was considered 
so that the identity 

(;)'- 

p + (Se/dv) . 

/iWa : ^ (84) 
(de/dp) . 

V, A 

2        a could be used.    It is clear that the second derivatives    (d e/dp )N_0» 
(oVopdv)^,     (o8e/ov8)Xas0,     (a

ae/oX3p)XsB0,     end    (dVoA&r)^ A 

must be calculated in order to calculate the- derivatives of 
(c/v)2 frcm Eq. (84). Differentiation of Eq. (82) leads to the 
following equations for these derivatives 
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'aa 

(a^) X«o 
(85) 

'9s (£*-) \Zabvl X«0 

1 
T 

.8 d g 

X=0 T     P   va X=0 

>a2 

(86) 

(87) 

(88) 

X=o p   p 

Equations (88) and (89) define the influence of the reaction on the 
sound speed when the explosive and its products satisfy Eq. (83). Fur- 
thermore, it follows that Eq. (83) is in general insufficient to calcu- 
late dsp/dh2 when the energy release rate is known. Values of 
dsp/ahs based on additional equation of state assumptions were calcu- 
lated and will be discussed later. But most attention was given to the 
simple case when the explosive is polytropic and the sound speed is not 
influenced by the -reaction because all the second derivatives of the 
energy in Eqs. (85)-(89) vanish except a8e/apav • 1/(K - 1). 

Evaluation of the terms in Eqs. (81) and (82) using Eq. (23) gives 
the following equations 

a a2u    2 [•(* - 1) ** A „ f    2(K - 1) (§X£l        rft0v ui ai^ =  K LTKTT) a! + uiW - in* + i> \^)S J     <90) 

B 
a P 
oh* 

a8x- 
G^^^-^iW-*!?] (Sl) 

with B » (7K - 5)(K + l)aua/4(K - 1), for the initial values of the 
second derivatives of particle velocity and pressure with respect to 
Lagrange distance. When the reaction rate in polytropic explosive is 
known as a function of state variables, Eq. (91) can be used to 
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determine whether the wave produced by a constant velocity piston 
develops initially with a positive or a negative pressure gradient. 

The validity of Eq. (91) was first tested by checking that d p/Sh2 = 0 
when the energy release rate is defined by Eq. (67) and the flow develops 

2     2 
as a step shock in pressure. The expression for d p/dh  as calculated 
with 

aX _ (2IC - 1) V /p_\r 

dt =  (K - l) Q« U / (92) 

showed indeed that d p/dh = 0 when n = (K - 2)/(K - 1), and also 
led to the conclusion that a3p/oh3 < 0 when n > (IC - 2)/(K - 1) and 
that Sap/dha > 0 when n < (K - 2)/(K - 1). 

o     2 
Expressions for d p/dh  were also derived using the following 

reaction rate laws: 

ax 
at 

ax 
at 

ax 
at 

-Ta/T    » 
Aie    (1 - X) 

Aae-
pa/p(l - X)n 

A3(l - X)*(p - p )m 

(93) 

(94) 

(95) 

Equation (93) is the well-known Arrhenius expression for a unimolecular 
reaction, and Eqs. (94) and (95) were used by Harper 2 and Bernler  to 
simulate the initiation behavior of condensed explosives. The form of 
Eq. (91) for the Arrhenius rate law will not be given here because the 
initiation process does not depend on the shape of the pressure profile. 
That this is so follows from the equations governing the temperature T. 
Since the volume is constant along the shock path, the rates of change 
of temperature and pressure at the shock front are related by the equation 

(I) 
dT. 
H <»P, H 

v,X dt dt 
(96) 

The rates of change of temperature and pressure along a particle path, 
however, are related by the equation 
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(|) 
hp\     dr 

. . dt 
v,A 

(97) 

where C »  and C .  denote the specific heats at constant volume and 
pressure.' Initially'therefore when dp /dt • op/ot,  dT/dt > dT~/dt and 
dT/dh < 0,  the temperature will increase faster along the piston path 
than along the shock path. As a consequence, the reaction rate will, be 
highest at the piston for both a positive and a negative pressure gra- 
dient. The criticality condition for initiation is then that the piston 
motion be maintained for a time longer than the characteristic reaction 
time 

T /T. 
Ax'Vc ,e a l 

t  =  ULl±  (98) 
c T Q 

a 

when T /T » 1 and T  denotes the initial shock temperature, 
a i i 

The situation is different for a pressure-dependent energy release 
rate because then the mechanism of initiation depends on the initial 
shape of the pressure pulse.  Consider first the case when the initial 
value of d'p/oh8 < 0. The pressure and reaction rate will increase 
faster along the piston path than along the shock path, and the wave 
will build up initially from behind. But when d2p/dhS > 0,  the 
pressure and reaction rate will increase faster along the shock path 
than along a particle path, and the wave will build up at the front. 
Since dp/dh > 0 in the steady wave, however, the initiation of deto- 
nation will exhibit both types of flow when the initial value of d p/oh < 0. 
Buildup to detonation in high density PETN exhibiting dp/dh < 0 and 
dp/dh > 0 was recently observed by Wackerle and Johnson.14 As the 
initial pressure is increased, the mechanism of initiation will change 
from one involving a negative and positive pressure gradient to one 
involving only a positive pressure gradient. To be more specific, con- 
sider the cases when the energy release rate is governed by Eqs. (94) 
and (95), and Eq. (91) becomes 

Jb*j>\      PjQ4(K- X) /3A\ar/K+ 1  Pa\Q  (2K - l)Vl 
B(d?) » u»(2K - 1) tST/ \inr- - yffi + 2tC(K-l) J   <"> 

and 

j£z). pjQ2(K I lW lyc* * i). 2 VS *(2K - 1)V1. doo) BV5hV      <(2K -  1) \bJ l\       K 1 - p /P< Alf +     K(K - 1)   J       ^XW> 
1 1 c    i    i 
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Equation (99) shows that oap/dha < 0 when p /p » 1. When dX/dt 
is small, the energy release rate is highest at the piston, and the 
criticality condition for initiation is that the piston motion be main- 
tained for a time longer than the characteristic reaction time 

a   a i 
p v e 

t. = A2  -=-    * (101) 
c p TQ 

Equation (100) shows that dap/dh2 > 0 when the initial pressure is 
less than p  defined by the condition 1 - p /p = (K + l)/Ka. when 
this condition is satisfied, the wave will build up to detonation with 
a positive pressure gradient as shown by the results of Bernier's numeri- 
cal calculations.   This type of buildup should also be observed in the 
former case when p /p. « 1. 

a i 

Calculations of the initial values of o p/dh  at various shock 
velocities and pressures were performed using pressure-dependent energy 
release rates; a general equation of state in which the unreacted 
explosive has a Hugoniot curve of the form U = a + biL, and the detona- 
tion product gases have a polytropic equation of state; and the detonation 
properties of PBX 9404-03, case Composition B-3, and cast TNT. For all 
three explosives the initial values of o p/dh  are negative at low 

I initial shock velocities and then become positive at higher shock veloci- 
I 2      2 

ties. The change in sign of d p/dh  occurs at a shock velocity sig- 
nificantly below the detonation velocity for PBX 9404-03, and at a shock 
velocity significantly higher than the detonation velocity for cast TNT. 
The shock velocity at which the initial value of dsp/dh becomes posi- 
tive thus increases as the sensitivity of the solid explosive to shock 

'2 '    2 
Initiation decreases. Since o p/dh  remains negative for initial 
shock velocities exceeding the steady state detonation velocity in 
cast TNT, the calculations predict the formation of a reactive pressure 
pulse at the piston face; this pulse eventually overtakes the initial 
shock front and causes detonation. This type of initiation has been 
observed in homogeneous liquid explosives and In high density PETN and 
XTX-8003. The buildup to detonation in PBX 9404-03 and Composition B-3 
is typical of heterogeneous solid explosives in which the initial shock 
front is strengthened and accelerated without the appearance of a 
velocity overshoot. 

Smooth buildup to detonation with (dap/dhs) > 0, resulting from 
the Impact of a flying plate, will now be discussed. For convenience, 
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the flow is assumed to satisfy the condition o p/dh > 0 so that 
3 u/3hdt < 0,  and the pressure on the piston is assumed to attain a 
maximum during the course of the reaction. The relationship between the 
particle velocity gradient and the energy release rate when the pressure 
on the piston is a maximum is obtained by setting dp/dt = 0 in the 
energy equation, rewritten as 

or op     c ou  r   dX ,,»„» __._*: __ + — q-- • (102) 
dh dt     T ih  TO  Jt 

The particle velocity gradient on the piston is also assumed to be 
positive during the course of the reaction. The curves of constant 
pressure were sketched to gain a better understanding of this type of 
flow, and a critical energy was defined for the initiation of detonation. 

Since o2p/oha > 0 at the piston, the pressure increases faster 
along the shock path than along the piston path, and the flow develops 
with a positive pressure gradient. The curves of constant pressure in 
the (t-h) plane for such a flow are shown schematically in Figure 2 
where OCS represents the shock path, ODP represents the piston path, 
and DC represents the locus of pressure peaks. 

Particles that enter the wave before t  attain their maximum 
pressure along DC, but particles that enter the wave after t  attain 
their maximum pressure at the shock front. Qualitative features of the 
curves of constant; pressure follow directly from the identity 

tr - -c IS <103> dt      p oh 

where C = (dh/dt)  denotes the slope of a curve of constant pressure. 
We are interested in* the case when op/oh * 0. When dp/dh > 0, the 
sign of C  is determined by the time rate of change of pressure along 
a particlePpath, and C < 0 where dp/dt > 0, but C > 0 where 
dp/dt < 0. When op/oh * 0, however, (dt/dh) « 0 where (dp/dt) .t 0, 
and 

', - (-$&)* 

at a singular point where dp/dt = 0. We are now in a position to con- 
sider the curves of constant pressure emanating from the piston. Since 
dp/dh > 0 at the piston, the curves of constant pressure intersect the 
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piston path at right angles except at the singular point D where 
dp/dt = 0.  The curves emanating from the piston before t. have nega- 
tive slopes and intersect the shock path because the pressure is higher 
at the shock than at the piston. But the curves emanating from the 
piston after td have positive slopes and do not intersect the shock 
path because the pressure is decreasing along a particle path while it 
is increasing along the shock path. When o p/dt < 0 at D,  D is a 
double point, and the slopes of the curves passing through it are 
determined by Eq. (104). 

MA-1322-22 

FIGURE 2     SCHEMATIC DIAGRAM OF THE LINES OF CONSTANT PRESSURE FOR 
THE INITIATION OF DETONATION UNITS Op/3h> > 0 
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Consider now the locus of peaks DC where dp/dt = 0 and Dp/Dt > 0. 
Since 

Dp    op Dh „M» 
—— = -sr- — (105) 
Dt    9h Dt V   ' 

along DC,  the slope of DC must be positive except at the double point, 
where it must be zero. Moreover since dp/dh > 0,  it follows that C = 0 
along. CD for t > t. and consequently the curves of constant pressure 
intersecting CD are tangent to the particle paths as shown in Figure 2. 

The curves of constant pressure emanating from the shock path after 
t  will now be considered.  It is evident that these curves cannot inter- c 
sect the shock path again because the pressure increases along the shock 
path as the wave develops into a detonation. Particular attention should 
be given to the curve with the Chapman-Jouguet (CJ) pressure shown 
schematically as JJ  in Figure 2.  JJ  must become parallel to the 
shock front and coincide with the CJ characteristic and the line of 
complete reaction as the reaction zone approaches a steady state.  It 
consequently separates the steady flow from the unsteady flow, and all 
curves of constant pressure emanating from the unsteady shock above J 
must become parallel to the shock front. 

A critical energy £  for the shock initiation of an explosive 
c 

can be defined as 

C r E  = £ pudt (106) 
c       Jn 

where p and u are the pressure and particle velocity along the piston, 
the half is included to account for the conversion of work into kinetic 
and internal energy, and the critical time. Of, denotes the time of 
formation of the forward-facing characteristic that eventually becomes 
the CJ characteristic in the steady detonation wave. Note that the 
critical energy is defined as a change in the internal energy rather 
than as the change in total energy specified by Walker and Wasley. 
Since former work on initiation  suggests that this critical charac- 
teristic lies in a centered reactive rarefaction fan, OK can In 
principle be determined by finding the position on the piston path where 
the second derivative of the characteristic becomes zero. Let s 
denote the slope of a forward-facing characteristic, so that 

C VQC /,/»-* 

+    (or/oh)    v 
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The condition determining 0! can then be written as 

= 0 • (108) 

Attempts were made to calculate p, u, and &   along the piston 
to determine Ec for a polytropic medium with a simple reaction rate 
law but, since approximations must be made unless a complete solution 
to the reactive flow problem i» known, a simpler approach to the critical 
energy problem was undertaken. 

The alternative approach was to apply Eq. (106) to the steady state 
wave and assume that the amount of energy required to initiate a steady 
detonation with no delay time17 is sufficient to initiate the explosive 
subjected to other initial conditions. Another way to look at this 
assumption is to say that, if there is a critical energy for initiation, 
its value will be determined by the properties of the steady state wave. 
Since the centered rarefaction fan in a steady wave emanates from the 
CJ point, the critical time a in the steady wave is taken as the reac- 
tion time. Evaluating Eq. (106) for a steady state detonation wave leads 
to the following equation for the critical energy 

_ PoD'z <[1 - Po/P]> 
C        2       <P0/P> 

where D denotes the detonation velocity,  Z denotes the reaction zone 
length, and the density terms in brackets denote values averaged over 
the reaction zone. Equation (109) for the critical energy takes into 
account the initial state and the equation of state of the unreacted 
explosive, the equation of state of the reactive mixture, and the kinetics 
and thermochemistry of the exothermic reaction supporting detonation. 
However, it gives values larger than those determined experimentally by 
Walker and Wasley. This disparity suggests that calculations of critical 
energy with the steady state wave must account for the fact that the 
completion of reaction on the rear boundary is not a necessary condition 
for initiation of detonation. 
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VI THE REACTIVE SHOCK PROBIUM 

Work was continued on the reactive shock problem with a prescribed 
energy release rate. Solutions for buildup to detonation were sought to 
provide a means of demonstrating the dependence of initiation on the 
energy release rate and on the rear-boundary conditions, and a means of 
calculating the critical energy for initiation defined in Section V. 
The new methods tried for. constructing solutions for reactive shocks 
were unsuccessful however. 

It is convenient to write the flow equations in terras of the 
Lagrange time T introduced earlier in this report as 

ov _ VQ 3U 

3t  "  U  &T 

OU  _    VQ dp 
9t " "u 3T 

(110) 

(111) 

dp     /cfdv  T  oX . ..,„. 
* = - W o7 + v  q * <U2) 

Our problem for a prescribed energy release rate is to find the volume 
field v(t,T),  the particle velocity field u = u(t,T),  and the pres- 
sure field p(t,T),  that satisfy the differential equations (110)-(112) 
along particle paths and satisfy the Rankine-Hugoniot jump conditions 
along the shock path where t » T. Previous attempts to solve this 
problem,4 with the explosive described by Eq. (23), and the energy 
equation written as 

made use of the fact that the v(t,T), u(t,T), and p(t,T) fields can 
be obtained from either the particle velocity gradient or the pressure 
gradient by integrating Eq. (38), Eq. (110), and Eq. (Ill) when the energy 
release rate at the shock front is prescribed. Consider, for example, 
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the case when the form of du/dT is assumed.  Integration of Eq. (38) 
gives the shock pressure, the shock particle velocity follows from 
Eq. (37), and the shock path can then be obtained by integrating Eq. (35). 
Integration of Eq. (10) along a particle path from the shock front gives 
the volume field, and integration of du/dT and Eq. (Ill) along an 
isochrone from the shock path gives the corresponding particle velocity 
and pressure fields. Since the energy equation was not used, however, 
a solution for a reactive shock is obtained only if the assumed form of 
du/dT. is compatible with the energy release rate and the calculated 
flow satisfies Eq. (113). A similar argument applies also to the case 
when the form of dp/dT is assumed. The problem can therefore be 
regarded as that of finding the particle velocity gradient that is com- 
patible with the prescribed energy release rate. This approach is prac- 
tically intractable, however, because the flow is related to the reaction 
through the energy equation, and there is no apparent way that this 
equation can be used to determine the particle velocity gradient. 

Since buildup to detonation is of particular interest, most atten- 
tion was given to the final attainment of steady state flow.  In one 
approach, the equations of motion were transformed so that their integrals 
consist of steady state terms and unsteady state terms that vanish as 
the steady state is attained. The independent variables were changed 
from (T,t) to (T,£ = T - t) so that the partial derivatives 
transform as follows 

d 

dT. H, dT, 
(114) 

d 

dt 
_d_ 

(115) 

and Eqs.   (110)  and  (111)  become 

_ dv du du 
ud€ + Vod4   "   "Vodr^ 

and 

(116) 

dp      ¥   du dp 
Vodf-uSf - -Voof; (117) 
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Formal integration of Eqs. (116) and (117) with respect to | gives the 
equations expressing the conservation of mass and momentum for unsteady 
flow as 

Uv • v0(U - u) - v0J (•§-) d| (118) 

P - po - PoUu - J (-g|) d$ ' (119) 

°    C 

The corresponding equation for the energy is most conveniently derived 
by integrating the first law of thermodynamics written as 

de      dpv dp   . ,,««», 
*i + W - voT <120) 

The combination of Eqs. (120), (117), and (118) leads to the equation 

de  dpv  ,    .du     ou    dp   du |* /ou\ .>     #,„. 
al + aT + (u " u)el " u BT - v ST " af J0 \S*)t* 

(121) 

which can readily be integrated to give the equation expressing the 
conservation of mass, momentum, and energy as 

e - eo + PV - povo + i(u - U)
a - *Ua - J [u(|^)| - v(|H) }* - «J (|S)I -€ •  "**> 

Equations (118), (119), and (122) can be regarded as perturbed Rankine- 
Hugoniot equations because thoy reduced to these equations as the flow 
attains a steady state and the derivatives (du/dTK » 0 and (dp/dT)> 
becomes zero. Attempts to ur>e these equations in a perturbation analy- 
sis to construct solutions '.'or the final approach to the steady state 
were unsuccessful. 

In the second approach to the reactive shock problem, the energy 
equation was integrated rather than used as a compatibility condition 
as in the previous treatment.  Although the pressure and volume fields * 1 
generated from the energy equation are compatible with a prescribed 1 
energy release rate, there is no guarantee that they are associated 1 
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with a unique particle velocity field because the continuity and momentum 
equations were not used in their construction. Hie continuity and 
momentum equations were therefore combined to obtain a condition that 
.the pressure and volume oust satisfy in order to be a solution to a 
reactive shock problem. This compatibility condition was derived as 

du ..      .a ^a 
H op   s d v a dp                   „„„% - u ——- ~ + P T-ar • - u -r-ff                     (123) H dT ST  *H 5t* H OT* 

by eliminating dSu/dtdT from the equations obtained by differentiating 
Eq. (110) partially with respect to t and differentiating Eq. (Ill) 
partially with respect to T, 

A simple case was considered first. An expression relating the 
volume and reaction was chosen as 

v     (or/oT) 
H H 

so that the energy equation could be integrated without difficulty, and 
the reaction was assumed to have no activation energy. The reaction 
rate was written formally as 

I |~ = x R(l - X) (125) 
I Ot     Of 

with R(l) = 1 and R(0) - 0, so that dX/ot * - SX/oT and the 
reaction rate at the shock front is constant. Integration of the 
energy equation gives the equation for the pressure field as 

(K + 1)P_ 
p - p (T)  s  fL—rpO) _ F(0)] (126) P  V '   4(K - l)G(X)1 

where p  denotes the spike pressure in a CJ wave and F is defined 
by the equation dF/dX = G ~ .  Integration of the differential equation 
along the shock path gives the equation for the shock pressure as 

Pu(t) - (p4 - P ) exp(- (K * 1} g(0)t/tt) + P„      (127) 
n ID     \    3 /    D 
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where P * Pj/2(K - l)g(O), g(0) - a(ou/dr)H • (d In G/dX) , and p± 

denotes the initial shock pressure t • 0. Examination of conditions 
for buildup to a steady state gives G as 

(K - DC - K -   (1 - X)* (128) 

and the equations for g(0) and F are obtained from Eq. (128) as 

2(K - 1) g(0) - 1 (129) 

2(K - 1)   K . i 
F(X) - F(0)  - -^ rf [G (1 + (1 - X)5 - 2] (130) 

(it. + 1) 

Equations (126) and (127) then give the equations for the pressure field 
as 

PD 4   VT) " PD P = Y (i + (i - A)5) + ——_—a (131) 

P
H
(T)
 = (pi - *»)»* [" eTriT)' £|+ p

D • <132> 

The fact that Eqs. (124), (131), and (132) do not satisfy Eq. (123) 
leads to the conclusion that Eq. (124) cannot be satisfied in a time- 
dependent wave that builds up to a steady state.  In other words, 
Eq. (124) is too restrictive and must be generalized to obtain a more 
realistic treatment of unsteady flow. 

Other attempts to construct solutions for the final stages of 
initiation were based on the assumption that the fall in pressure along 
a particle path is proportional to the fall in pressure along a particle 
path in the steady state wave. The equation expressing this condition 
is obtained from the equation for the pressure in a CJ wave 
P * P«/2(l + (1 - A*) as 

dp       V    SX 
-£ - j~ (133) 
St     4(1 - A)* dt 

with E an arbitrary function of T. A unimolecular reaction with no 
activation energy was considered to simplify the integration of the 
energy equation.  In this case, Eq. (133) reduces to the equation 
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5p 
at 4a 

E(T) e 

T-t 
20L (134) 

since 1 - X • e      .  Integration of Eq. (134) gives the equation 
for the pressure field, which is written for convenience as 

P - B + E e 

T-t, 
2<X (135) 

with B another arbitrary function of T. Integration of the energy 
equation gives the corresponding volume field as 

v = 
vo 

(K + 1)E* 
KB - E e (136) 

Evaluating Eq. (136) at the shock front, however, where v = v * 
[(K - l)/(K + l)]v0 and t = T gives the following relationship 

between E and B, 

KB = (K - 1)E + E (137) 

The equations for the pressure and volume can therefore be written 

in terms of the arbitrary function E as 

p = T 

T-t\ 

-  + E fe + e 
J 

and 

v = 
vo- 

(K + 1) 
(K - 1) +i|l - e 

T-tn 
2a 

The equation for the shock pressure follows from (138) as 

(138) 

(139) 

PH * 2* ((K " 1)E8 + (,C + 1>E) (140> 

and the differential equation for shock pressure leads to the following 
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equation for E 

dE 
dT 

(1 - E) 

6a(l + £(K - 1)/(K + 1)]E) 
(141) 

the question now arises whether Eqs. (138) and (139) satisfy the com- 
patibility condition. The equations obtained by differentiating Eqs'. 
(138) and (130), together with Eq. (141), show that Eq. (123) is not 
satisfied. Here again the assumption made about the flow was not 
realistic enough and we were unable to find a solution for the final 
buildup to detonation. 
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VII RESULTS AND RECOMMENDATIONS 

The results of the theoretical study of reactive shock waves 
presented in this report lead to a better understanding of the initiation 
of detonation in condensed explosives. 

Various aspects of shock initiation were considered. The differ- 
ential equation governing a shock discontinuity was used to determine 
different conditions for a single shock trajectory for buildup to 
detonation. One of these conditions for single shock buildup produced 
by a flying plate was used to construct a solution for the type of flow 
observed by Kennedy  during the early stages of initiation in PBS 9404. 

Other properties of initiation induced by a constant velocity piston 
or a flying plate were considered. The equations relating the initial 
flow to the initial energy release rate in such a wave were derived. 
These equations provide a means of determining the variation of energy 
release rate with pressure at the front of the wave when the Hugoniot 
curve of the explosive is known.  Conditions were also determined for the 
shock produced by a constant velocity piston to accelerate with either 
a positive or a negative pressure gradient. These conditions are important 
because they demonstrate how the mechanism of initiation depends on the 
energy release rate, the sound speed, and the relationship between these 
quantities. A critical energy for initiation was defined for the case 
when the wave builds up with a positive pressure gradient. Work on the 
reactive shock problem was continued, and integral relationships for 
unsteady flow were derived as generalized Ranklne-Hugonlot equations 
without making approximations. Attempts to construct explicit solu- 
tions for the initiation of steady state waves so that critical energies 
could be calculated were however unsuccessful. 

Steady state detonation was considered, and a perturbation analysis 
for a simple reaction was carried out to determine a sufficient condition 
for its stability. 

Additional studies that would extend the work presented in this 
report are recommended to Improve our present understanding of the 
Initiation of detonation in condensed explosives. A general criticality 
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Appendix 

STABILITY OF THE STEADY DETONATION 

An objective of the research reported here has been to separate 
initial conditions leading to steady detonation from those producing 
extinction or some sort of irregular burning. For initial conditions 
close to the steady state, the problem is one of finding the stability 
boundary where perturbations in parameter values on one side of the 
boundary lead to steady detonation while those on the other side do not. 

A first attempt at locating the stability boundary is made below 
by examining whether a small initial irregularity will grow. The 
irregularity at a point in the unburnt material is swept over by the 
shock. The perturbation wave in the reacting flow behind the shock is 
headed by a sound wave or characteristic. It is found that the effect 
of the initial disturbance dies away along the characteristic if K , 
the polytropic index, is small enough; the critical IC depends 
on n , the order of the reaction. If K is larger than this value, 
the initial disturbance does increase with time, at least part way along 
the characteristic, so that an instability can arise. The results is 
sketched for a particular case in Figure A-l. 

Steady State 

The gas dynamic equations for one-dimensional, adiabatic, reactive 
flow read 

f>  + Pu  « 0' 
X •:••.•.••  . M.-- ••••:••:.   _.;;;       •  . 

Pu + p_   as  0 

p•+ Kpu, « (K.'. l>Qpft 

A - 8 

where P is the gas density, p the pressure, u the particle velocity, 
X the fraction of gas reacted at rate R ,  K the polytropic 
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indes, and Q the heat released. The Eulerian coordinates are distance 
x and time t with the superior dot denoting the material time 

derivative. 

Solutions of the equations representing steady states are those 
where P,  p,  u,  and X are functions of (t - x/D) only, where 
D is a constant speed. If the steady state is headed by a strong shock 
moving at speed D into quiescent gas of density' Po , the jump conditions 

give just behind the shock 

u - 2D/(K + 1) 

p * Po (K + DA* - 1) 

p = PDu 

X' • o 

The corresponding steady state is 

P » PoD/(D - u) 

p = PoDu 

X - u[D - (K + 1) u/2]/(K - 1)Q 

The Chapman-Jouguet condition, that D • u + c where the reaction is 

complete (X • 1) , is satisfied if 

Da = 2(KS - 1)Q 

Here c is the sound speed given by 

c* • Ku(D - u) 

The above steady state equations relate the dependent variables to 
one another. Their relation to the coordinate locations is found from 

the reaction equation 

A - R 

This equation can be expanded to read 

2(K + 1)(D - u)t» -  <K + Dulu'/D8    »    R 
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where the prime denotes differentiation with respect to (t - x/D), 
Integration gives 

u 
t - x/D m   J 2(K + l)(D - u)[D - (K + Duldu/DPR 

The particular form for R used below is 

where Of and n are constants. This form approximates the rate 
expression for a reaction of order n with simple pressure dependence. 
Since 

1 - X = [D - (K + l)u]3/D8 

one sees that this reaction is complete in a finite time only if n < 1. 

Perturbation Equations 

For a small perturbation of the steady state, 

p s p + ep,  u » u + €u,  etc., 

where the bar indicates the steady state function given above, the tilde 
denotes a quantity of ordinary magnitude, and e is a small constant. 
Substitution in the gas dynamic equations gives, to the first order in 

e, 

P^ + up_ + uP + Pu + Pu  * 0 
t     X     x     X     X 

P(u + uu ) + P(u + uu + uu ) + p  = 0 
t     X       t     X     X     X 

p^ + up  + up  + K(pu  + pu )  *  (K - 1) Q(pR + PR) 
t     X     X       XX 

X^ + uX + tiX  • R 
t     X     X 

where the tildes have been omitted from the perturbation quantities for 
simplicity. 
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Along particle paths, linear combinations of the equations in 
characteristic form read: 

X„. + uX + uX  • R 
t    x    x 

- ca (p^ + up ) + p    + up    - ca (up    + Pu ) + p u + Kpu 
txtxxxx X 

» (K - 1)Q (PR + PR) 

along particle paths, and 

p + (u ± c)p ± cP[u + (u ± c)u ] 
t X        t X 

* c(p[u^ + uu ] + Pu u) + p u + Kpu 
t     X      X      X       X 

= (K - DQ (PR + PR) 

along forward (+) and backward (-) sound waves. 

The perturbation at the shock is found in the same way: 

u - 2D/(K + l) 

P m     0 

p = 2PDu 

X  = o 

Irregularity at a Point 

A snail irregularity is supposed present at a point in the unburnt 
material. When the shock reaches this point it will experience a 
velocity perturbation CD. Corresponding perturbations u, p, p, and 
X arise according to the shock equations given above. The expressions 
are made precise by setting D • 1 and putting the magnitude of the 
perturbation into e. The only requirement is that e is small enough 
that it is reasonable to neglect € with respect to 1. 

The first effect of the Irregularity is a discontinuity propagated 
along the backward running sound wave. Since particle paths cross this 
sound wave, the equation 
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X^ + uX  + uX   »  R 

holds across the wave in spite of the jump in the value of u and per- 
haps of R. One sees that the equation remains satisfied by an abrupt 
change in the cross-derivative of X, 

X. + uX 
t    x 

if needed, and not by any change in X itself. The perturbation X 
therefore retains just behind the sound wave the value zero that it had 
in the steady flow ahead of the wave. On the wave 

The other equation valid along particle paths may be written 

(p - cs P) + u(p - cs p) + P(ca + uca ) - ca (up + pu ) + p u + Kpu 
t xtx X    x    x      X 

= (* - 1)Q(PR + PR) 

By the same argument as above, one finds that 

p - c3 P = 0 

on the sound wave. 

From the forward running sound wave in the same way, 

p + Pcu = 0 

The above relations valid along the backward running sound wave 
permit the elimination of p, p, and X from the equation for the 
wave. One obtains 

u + (u - c)u + (uV4Kc5u)Mu « 0 
t x 

where •• 

— /s :?*%#>W^ 

M m  K3uD + c[(K - 2)D + 2(1 - K8)ur+ [K^U/CIC + l)u J(R/u) 

Since u  has the same sign as R, which is positive, the 
coefficient of Mu in the differential equation is positive. One sees 
that the perturbation at the shock grows with time along the sound wave 
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if M is negative and decays if M is positive. Since M varies 
with  u , decay and therefore stability are assured only if M is 
positive for the whole range of values of u. This stability criterion 
is examined for a particular rate expression below. 

Stability of a Particular Reaction 

For the reaction 

R - Pn-1(l - X)n/« 

one finds 

R/R - (n - 1HP/P) - nX/(l - X) 

Since along the backward running sound wave propagated from the initial 
disturbance 

S = 0 
and 

pf = (p/c)u 

one finds 
R/u =  (n - l)R/c 

Use of the expressions for these steady state quantities in terms of u 

gives finally 

M - K3uB + c[(K + n - 3)5 + (K + l)u(3 - n - 2*)] 

An investigation of the equation of M for u on its range D/(* + 1) s 

u ^ 2D/(K + 1)  is now required. 

If one sets M • 0 , one finds that there are_generally three roots 
for u. One of these roots is at the C-J value, u = D/(K_+ 1),  for 
any values of K and n. There is a second root at u • D/(K + 1) if 

n - 3 + K(K - 3) 

• There is a root at the shock, u « 2D/(K + 1) , if 

n » 3 + K{-2 ± C(K + 1)/(K - 1)]*} 

47 



n^ww^^ww^^^jf^^iw^pp^i.ii i]  win wm^^p—yijijii-jiM^M. PPHP""!W HP»«'i »-« i . »• i 

18 *.,.•• _: ..; 

vsU>V 

,- i 

JBR' 

JiP*1ii§ 

2jS8$fe 

. #*!•*' 

•wpr^iwi ifc 'ft 

;" ' >^-;'-   ••'•    i..J 

E_   '-.Y&Ksa H -    * *'     jSBl 

':•••' S| 

£ : J 

.'-=.. ;-•."•;*•', •;;• 

&**. 

**a,*-S* ..'T<9^r 3fi»^:'   .-. fci'i.l   -f»::;.«fc?? -Si.# * <**»   «.«->^.,;    • ,    . 
vfeJ* <*•. **.-'•: \.ii0yjj0,. ik)&...•&&!(• li'krS'ik'.*.;;«$$»•• fc&fy*»• -•?>*..<:&*$••'-v**^'•*#:#••" '. •'"•'•»•' ' 

;*rasi*lW'*:'^MkWal'.^;:'-'#^^*«^ V'-,,.*v ,«**'-;• * \:-.f
::,»•;•&$%#'•$** s^,'^1, ••?'ir' 

.lW'*£"-»fr**fc -*l"Mfr 

Ii«-_*if5i*:- 

& 

:.*, 



«.anpSi v.^v^^.v-'1^;-"-:, .i.~-j~-f:^^^.,-.^..!r^.., ..WHi, 

No. of 
Copies Organization 

DISTRIBUTION LIST 

No. of 
Copies Organization 

12 Commander 
Defense Documentation Center 
ATTN: DDC-TCA 
Cameron Station 
Alexandria, VA 22314 

5 Director of Defense 
Research § Engineering 

ATTN: DD/TWP 
DD/SSSS 
DD/TISS 
AD/SW 
Mr. J. Persh, Staff 

Specialist Materials and 
Structures 

Washington, DC 20301 

1 Assistant to the Secretary 
of Defense (Atomic Energy) 

ATTN: Document Control 
Washington, DC 20301 

3 Director 
Defense Advanced Research 

Projects Agency 
ATTN; Tech Lib 

NMRO 
PMO 

1400 Wilson Boulevard 
Arlington, VA 22209 

1 Director 
Institute for Defense Analyses 
ATTN: IDA Librarian, 

Ruth S. Smith 
400 Army-Navy Drive 
Arlington, VA 22202 

1 Director 
Defense Intelligence Agency 
ATTN: Technical Library 
Washington, DC 20302 

Director 
Defense Nuclear Agency 
ATTN: STTL/Tech Lib 
Washington, DC 20305 

Commander 
Field Command, DNA 
ATTN: FCPR 
Kirtland AFB, NM 87115 

Director 
Defense Civil Preparedness 
Agency 

ATTN: Mr. George Sisson/RF-SR 
Technical Library 

Washington, DC 20301* 

Commander 
US Army Materiel Development 
and Readiness Command 

ATTN: DRCDMD-ST 
5001 Eisenhower Avenue 
Alexandria, VA 22333 

Commander 

US Army Aviation Research 
and Development Command 

ATTN:  DRSAV-E 
12th and Spruce Streets 
St. Louis, MO 63166 

Director 
US Army Air Mobility Research 
and Development Laboratory 

Ames Research Center 
Moffett Field, CA 94035 

Commander 
US Army Electronics Research 

and Development Command 
Technical Support Activity 
ATM:   OEUSD-L 
Fort Monmouth, NJ 07703 

49 

ntn 



DISTRIBUTION LIST 

No. of 
Copies Organization 

No. of 
Copies Organization 

Commander 
US Army Communications Rsch 

and Development Command 
ATTN: DRDCO-SGS 
Fort Monmouth, NJ 07703 

Commander 
US Army Missile Research 

and Development Command 
ATTN: DRDMI-R 
Redstone Arsenal, AL 3S809 

Commander 
US Army Missile Research 

and Development Command 
ATTN: DRCPM-MDEI 
Redstone Arsenal, AL 35809 

Commander 
US Army Missile Materiel 

Readiness Command 
ATTN: DRSMI-AOM 
Redstone Arsenal, AL 35809 

Commander 
US Army Tank Automotive 

Research § Development Cmd 
ATTN: DRDTA-UL 
Warren, MI 48090 

Commander 
US Army Armament Materiel 

Readiness Command 
ATTN: DRSAR-LEP-L, Tech Lib 
Rock Island, IL 61299 

Commander 
US Army Armament Research 
and Development Command 

ATTN: DRDAR-TSS (2 cys) 
DRDAR-LCE, R. Walker 

Dover, NJ 07801 

Commander 
US Army White Sands Missile 

Range 
ATTN: STEWS-TE-N, Mr. J.Gorman 
White Sands, NM 88002 

Commander 
US Army Watervliet Arsenal 
ATTN: DRDAR-LCB-TL 
Watervliet, NY 12189 

Commander 
US Army Materials and 

Mechanics Research Center 
ATTN: Tech Lib 
Watertown, MA 02172 

Commander 
US Army Natick Research 

and Development Command 
ATTN: DRXRE, Dr. D. Sieling 
Natick, MA 01762 

Commander 
US Army Foreign Science 

and Technology Center 
ATTN: Rsch § Data Branch 
Federal Office Building 
220 Seventh Street, NE 
Charlottesville, VA 22901 

Director 
US Army TRAD0C Systems 
Analysis Activity 

ATTN: ATAA-SL, Tech Lib 
White Sands Missile Range 
NM 88002 

Commander 
US Army Nuclear Agency 
ATTN: Technical Library 
7500 Backlick Rd, Bldg 2073 
Springfield, VA 22150 

50 

m 



•tfifci:-iS..i-T,-:^.- >••-i fcsijs =, ifcli? tsta-r. 

No. of 
Copies Organization 

DISTRIBUTION LIST 

No. of 
Copies Organization 

3 Director 
US Army BMD Advanced 
Technology Center 

ATTN: CRDABH-X, J.Davidson 
CRDABH-S, Mr. M.Capps 

N. J. Hurst 
P. 0. Box 1500, West Station 
Huntsville, AL 35807 

1 Commander 
US Army Research Office 
P. 0. Box 12211 
Research Triangle Park 
NC 27709 

1 Chief of Naval Research 
ATTN: Technical Library 
Department of the Navy 
Washington, DC 20360 

2 Chief of Naval Operations 
ATTN: OP-03EG 

0P-985F 
Department of the Navy 
Washington, DC 20350 

1 Chief of Naval Material 
ATTN: MAT 0323 
Department of the Navy 
Arlington, VA 22217 

1 Commander 
Naval Sea Systems Command 
ATTN: 0RD-91313 Library 
Department of the Navy 
Washington, DC 20362 

1 Commander 
Naval Ship Engineering Center 
ATTN: Technical Library 
Hyattsville, MD 20782 

Commander 
David W. Taylor Naval Ship 
Research § Development Ctr 

ATTN: Library Div, Code 522 
Bethesda, MD 20084 

Commander 
Naval Surface Weapons Center 
ATTN: Technical Library 
Dahlgren, VA 22448 

Commander 
Naval Ship Research and 

Development Center Facility 
Underwater Explosions Research 

Division 
ATTN: Technical Library 
Portsmouth, VA 23709 

Commander 
Naval Weapons Evaluation 

Facility 
Kirtland AFB 
Albuquerque, NM 87117 

Commander 
Naval Research Laboratory 
ATTN: Code 2027, Tech Lib 

Code 8440, F.Rosenthal 
Washington, DC 20375 

Superintendent 
Naval Postgraudate School 
ATTN: Code 2124, Tech Rpts Lib 
Monterey, CA 93940 

AFATL (AHN, C. McCullogh, 
L. Elkins) 

Eglin AFB, FL 32542 

AFIT (Lib Bldg. 640, Area B) 
Wright-Patterson AFB, OH 45433 

51 



DISTRIBUTION LIST 

No. of 
Copies     Organization 

2  Director 
Lawrence Livermore Laboratory 
ATTN: Larry W. Woodruff, L-125 

Tech Information Div 
P. 0. Box 80S 
Livermore, CA 94550 

1  Director 
Los Alamos Scientific Lab 
ATTN: Doc Control for Rpt Lib 
P. 0. Box 1663 
Los Alamos, NM 87544 

1 Director 
NASA Scientific and 
Technical Information Facility 

ATTN: SAK/DL 
P. 0. Box 8757 
Baltimore/Washington 
International Airport, 
MD 21240 

2 Southwest Research Institute 
ATTN: Dr. W. E. Baker 

A. B. Wenzel 
8500 Culebra Road 
San Antonio, TX 78206 

3 Stanford Research Institute 
ATTN: Dr. G. R. Abrahamson 

Dr. Michael Cowperthwaite 
SRI Library, Rm G021 

333 Ravenswood Avenue 
Menlo Park, VA 94025 

1  Washington State University 
Administration Office 
ATTN: George Duval 
Pullman, WA 99163 

Aberdeen Proving Ground 

Dir, USAMSAA 
ATTN: Dr. J. Sperrazza 

Mr. R. Norman, GWD 
Dr. Rivello 
R. Bailey 

Cdr, USATECOM, ATTN: DRSTE-S6-H 

52 


